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Abstract

Two-phase laminar ¯ow in a heated capillary slot, driven by liquid evaporation from the interface, is
investigated and a quasi-one-dimensional model is proposed. The model takes into account the
multistage character of the process as well as the a�ect of capillarity, frictional and gravity forces on the
¯ow development. The theoretical description of the phenomenon is based on the assumption of
uniform distribution of hydrodynamic and thermal parameters over the cross-section of the liquid and
vapor ¯ows. With this approximation, the mass, thermal and momentum equations for the average
parameters are obtained. These equations are solved to determine the velocity, pressure and temperature
distributions along the capillary axis, the shape of the interfacial surface for various geometrical and
regime parameters as well as various physical properties of the liquid and vapor. The e�ect of the
microchannel size, initial temperature of the cooling liquid, wall heat ¯ux and gravity on the ¯ow are
considered. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The challenge posed by high electronic chip heat ¯ux makes thermal management a key
factor in the development of electronic systems. The cooling of microelectronic components by
new cooling technologies, as well as improving the existing ones, is becoming a necessity as
power dissipation levels of integrated circuits increase and their sizes decrease. Miniature heat
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sinks, in which liquid ¯ows, in silicon wafer, could signi®cantly improve the performance and
reliability of semiconductor devices by increasing the e�ective thermal conductivity, decreasing
the temperature gradients across the wafer, decreasing the maximum wafer temperature and
reducing the number and intensity of localized hot spots.
One of the possible ways to enhance heat transfer in the cooling systems of various devices is

by phase change in microchannels which are fabricated in the device. This circumstance has
been the motivation for a number of theoretical and experimental investigations covering
various aspects of heat transfer in a capillary space with phase change.
In the earliest research on microscale ¯ow heat transfer, Tuckerman and Pease (1981)

studied the single-phase ¯uid ¯ow and heat transfer characteristics in microchannels and
demonstrated that electronic chips could be e�ectively cooled by means of the forced
convection ¯ow of water through microchannels fabricated in the silicon. Following
Tuckerman's (1984) research, some other researches (Wu and Little, 1984; Weisberg et al. 1992;
Peng and Peterson, 1995) have contributed to a better understanding of the ¯uid ¯ow and heat
transfer mechanism occurring in microchannels with single-phase ¯ow. An extensive review of
the available cooling data for single-phase microchannels ¯ow has been done by Bailey et al.
(1995). Although single-phase microchannels can e�ectively cool miniature devices, they
present some inherit disadvantages like large pressure drops and streamwise increases in the
heat sink temperature. However, two-phase heat dissipation can achieve very high heat ¯uxes
for a constant ¯ow rate while maintaining a relatively constant surface temperature.
Bowers and Mudawar (1994a) performed an experimental study of boiling ¯ow within mini-

channel (2.54 mm) and micro-channel (d = 510 mm) heat sink and demonstrated that high
values of heat ¯ux can be achieved. Bowers and Mudawar (1994b) also modeled the pressure
drop in the micro-channels and mini-channels, using Collier (1981) and Wallis (1969)
homogenous equilibrium model, which assumes the liquid and vapor phases form a
homogenous mixture with equal and uniform velocity and properties were assumed to be
uniform within each phase.
Landerman (1994) developed an analytical model for two-phase boiling heat transfer in a

high aspect ratio rectangular channel. The ¯ow regimes in the channel were mapped and then
the heat transfer and wall temperature were evaluated, using heat transfer coe�cients taken
from the literature.
A mathematical model of the evaporation liquid±vapor meniscus in a capillary slot has been

developed by Khrustalev and Faghri (1995). The model includes a two-dimensional steady-
state momentum conservation and energy equations for both the vapor and liquid phase, while
the liquid±vapor interface curvature was constant along the interface. Wayner et al. (1976)
developed a simple procedure to obtain the heat transfer coe�cient for the interline region of
an adsorption controlled wetting ®lm. Xu and Carey (1990) developed an analytical model to
predict the heat transfer characteristics of ®lm evaporation on a microgroove surface.
A di�erent analytical approach to the pressure drop of boiling two-phase ¯ow in extremely

narrow channels (35±110 mm between plates) was suggested by Morijama and Inoue (1992).
The momentum equations for the liquid and the vapor were introduced in order to evaluate
the pressure loss along the gap for slug ¯ow and ®lm ¯ow regimes, assuming equal and
constant liquid ®lm thickness on the upper and lower wall.
From the foregoing literature discussion it is seen that some analytical models were
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developed in order to evaluate the ¯uid ¯ow and heat transfer along a capillary channel/slot.
However, in order to fully understand these phenomena there is a need to develop a
mathematical model which takes into consideration all the factors which in¯uence the ¯uid
¯ow and heat transfer: capillarity, frictional, inertia and gravity forces, interfacial interaction,
etc.
The ¯ow in the heated capillary depends on a number of parameters including the channel

geometry, physical properties of the liquid and the heat ¯ux. An immediate consequence of the
liquid heating and evaporation is a convective motion of both phases. The latter leads to a
velocity and temperature ®eld transformation and a change in the meniscus shape.
The objective of the present research is to construct a quasi-one-dimensional model of ¯ow

in a heated capillary, with the hydrodynamic, thermal and capillarity e�ects. We study the
in¯uence of heat transfer on steady-state laminar ¯ow in a heated capillary, the shape of the
interface surface and the velocity and temperature distribution along the capillary axis.
In the present work, a one-dimensional model for boiling two-phase ¯ow along a planar

capillarity channel is presented. The model takes into account the a�ect of capillary, friction
and gravity forces on the ¯ow development and the parameters which in¯uence the ¯ow
mechanism are evaluated. The theoretical description of the phenomena is based on the
assumption of uniform parameter distribution over the cross-section of the liquid and vapor.
In the next section, we describe the physical model of the process. The governing equations

and conditions of the interfacial surface are considered in Section 3 and 4. In Section 5 we
present the equations for the average parameters. In Section 6, we display the quasi-one-
dimensional model. The integral relations for the thermohydrodynamic characteristics of ¯ow
in a heated capillary are considered in Section 7. The results of calculations and discussion is
presented in Section 8. Conclusions are summarized in Section 9.

2. The physical model

A capillary system is said to be in a steady-state equilibrium position when the capillary
forces are equal to the hydrostatic pressure force (Levich, 1962). The heating of the capillary
walls leads to a disturbance of the equilibrium and to a displacement of the meniscus, causing
the liquid±vapor interface location to change as compared to an unheated wall. This process
causes pressure di�erences due to capillarity and the hydrostatic pressures exiting the ¯ow
which in turn causes the meniscus to return into the initial position. In order to realize the
above-mentioned process in a continuous manner it is necessary to carry out continual heat
transfer from the capillary walls to the liquid. In this case the position of the interface surface
is invariable and the ¯uid ¯ow is stationary 1.
The idealized picture of the ¯ow in a heated microchannel is shown in Fig. 1a. Such ¯ow

possesses a number of speci®c properties due to the existence of the interfacial surface
restricting the domains ®lled by vapor and liquid. The latter has an in®nitely thin surface with

1 From the thermodynamical point of view the process in a heated capillary is similar to a heat engine transform-
ing heat to mechanical energy of ¯ow.
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a jump in pressure and velocity, while the temperature is equal. One can see that in a heated
capillary there are three distinct regions (heated, evaporation, superheated) corresponding to
di�erent types of ¯ow. Within the ®rst and the third, one-phase liquid (vapor) ¯ow occurs.
Heat transfer from the wall to the ¯uid is accompanied by an increase of the liquid (vapor)
temperature and velocity downstream. In the second region liquid±vapor ¯ow interaction takes
place. Heat ¯ux causes the liquid to progress downstream and to evaporate.

3. Governing equations

The mass, thermal and momentum balance equations will be used. The key assumption of
the present analysis is that the Knudsen number of the ¯ow in the capillary is small enough.
This permits one to use the continuum model for each phase. Due to the moderate ¯ow
velocity, the e�ects of compressibility of the phases as well as of mechanical energy dissipation
in the phases are negligible. Assuming that thermal conductivity and viscosity of vapor and
liquid are independent of temperature and pressure, we arrive at the following equations:

divr�a�v�a� � 0 �1�

r�a�v�a�rh�a� � l�a�r2T �a� �2�

Fig. 1. (a) A heated capillary scheme. (b) The evaporation scheme. I Ð (a±b), II Ð (b±c), III Ð (c±d), IV Ð (d±a),
V Ð (a±e), VI Ð (e±f), VII Ð (f±h), VIII Ð (h±a), I ' Ð (a±d), II ' Ð (e±a), III ' Ð (d±e)
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r�a��v�a�r�v�a� � ÿrP �a� � m�a�r2v�a� � m�a�

3
grad div v�a� �3�

where r, v, T and h are the density, velocity, temperature and enthalpy (bold letters denote
vectors) v has components u, v, w, which are directed along the axes x, y and z, respectively. P
is the pressure, l and m are the thermal conductivity and viscosity, respectively. H and H 2 are
the gradient and the Laplacian operator. The superscript a=1 and 2 corresponds to vapor
(a=1) or liquid (a=2)2.
In order to close the system of Eqs.(1)±(3) it is necessary to supplement the gas equation of

state and the equation determining the dependence of liquid density on temperature

P �1� � P �1��r�1�T �1�� �4�

r�2� � r�2��T �2�� �5�
The system of Eqs. (1)±(5) should also be supplemented by a correlation determining the

dependence of enthalpy on temperature: h�a� � h�a��T �a��:

4. Conditions of the interface surface

We now describe the conditions corresponding to the interface surface. For stationary
capillarity ¯ow, these conditions can be expressed by the equations of continuity of mass,
thermal ¯uxes on the interface surface and the equilibrium of all acting forces (Landau and
Lifshitz, 1959). For a capillary with evaporative meniscus the balance equations have the
following form:

X2
a�1

r�a�v�a�n�a�i � 0 �6�

X2
a�1

�
r�a�v�a�h�a� � l�a�

@T �a�

@xi

�
n
�a�
i � 0 �7�

X2
a�1
�P �a� � r�a�v�a�i v

�a�
k �n�a�i � �s�2�ik ÿ s�1�ik �nk � b�rÿ11 � rÿ12 �n�2�i �

@b
@xi

�8�

where b is the surface tension; sik is the tensor of viscous tension; v(a )ni
(a ) and (@T (a )/@xi)ni

(a )

are the normal components of the velocity vector and interface surface gradient, respectively; r1
and r2 are the general radii of curvature of the interface surface; and ni and nk correspond to
the normal and the tangent directions; ni

(1)=ÿni(2).
When the interface surface is expressed by a function x=j( y, z ) the general radii of

2 The term accounting for the so-called `second' viscosity is omitted in Eq. (3).
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curvature are found from the equation (Smirnov, 1964):

Ar2 � Br� c � 0 �9�

where A � �a1a2 ÿ a23�; B � a4�2a3a5a6 ÿ �1� a25�a2 ÿ �1� a26�a1�; c � �1� a25 � a26�2;
a1 � �@2x=@y2�b; a2 � �@2x=@z2�b; a3 � �@2x=@y@z�b; a4 � �1� �@x=@y�2b � �@x=@z�2b�1=2;
a5 � �@x=@y�b; a6 � �@x=@z�b: The index b corresponds to the interface surface.
For the ¯ow in a slot (the plane problem: x=j( y )) the general radii of curvature equal

r1 � 1, r2 � �1� f �1�
0 2�3=2

f �1� 00
� cÿ1 �10�

where f (1) ' and f (1)0 equal (df (1)/dx )b and (d2f (1)/dx 2)b, respectively; f �1� � jkjyb is half the
vapor ¯ow cross-section area and k is a unit vector in the z direction.
The vapor pressure on the interface surface may be found from the Clapeyron±Clausius

equation (Appendix A):

dP �1�

dT �1�
� hLGr�1�

T �1�
�11�

Assuming the vapor is an ideal gas

P �1� � Rr�1�T �1� �12�
and combining Eqs. (11) and (12), we arrive (after integration) at the dependence of the vapor
pressure on the temperature at the interface surface:

P �1� � ~P exp�ÿhLG=RT
�1�� �13�

where ~P�P 0 exp�hLG=RT
0 �; P ' and T ' are some values of the pressure and temperature on the

saturation line.

5. Equations for the average parameters

To derive the equations for the average parameters we use Eqs. (1)±(3) in the following form

@

@xl
�r�a�v�a�l � � 0 �14�

@

@xl

�
�r�a�v�a�l h�a�� ÿ l�a�

@T �a�

@xl

�
� 0 �15�

@

@xk
�P�a�ik � � 0 �16�
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where P�a�ik � P �a�dik � r�a�v�a�i v�a�k ÿ s�a�ik , dik is the Kronecker delta; dik=1 for i=k, dik=0 for i$
k; i, k=1, 2, 3; s�a�ik �m�a���@v�a�i =@xk���@v�a�k =@xi � ÿ �2=3�dik�@v�a�l =@xl��; l=1, 2, 3.
Introduce average (over the ¯ow cross-section) parameters as:

hJ �a�i � f �a�
ÿ1
�
f �a�

J �a� ds �17�

where J is the parameter under examination and h i is the operator indicating averaging over
the cross-section. Then we obtain equations for the average parameters (Appendix B).
These equations, supplemented by the expression for the liquid density and vapor pressure,

may be integrated for the general case only numerically. However, for some important
particular cases, reasonable approximations can be introduced which simplify the system of
equations for the average parameters to a form that can be integrated analytically. This
approach, developed below, yields expressions for a set of ®rst order integral equations of the
average parameters.

6. Quasi-one-dimensional approach

Signi®cant simpli®cation of the governing equations may be achieved by using a quasi-one-
dimensional model for the ¯ow. Assuming: (i) the velocity, temperature and pressure
distributions in the cross-section are uniform, (ii) all parameters depend on longitudinal
coordinate and expressing the external heat ¯ux and drag force as Qext �

�
fii
q ds, Fext ��

fii
t ds � fii�jkj

� x
x in

dx, fint�jkj
� �
x in
�1� � f �1��2�1=2�, (xin is some initial value of x ) we obtain the

following equations:

d

d �x

 X2
a�1

�r�a� �u�a� �f �a�
!
� 0 �18�

d

d �x

 X2
a�1

�r�a� �u�a� �h
�a� �f �a�

!
� W� Peÿ1

X2
a�1

�l
�a� d

d �x

�
�f �a�

d �T

d �x

�
�19�

d

d �x

 X2
a�1

�r�a� �u�a�
2 �f �a�

!
� Eu

d

d �x

 X2
a�1

�P
�a�
f �a�

!

� d

d �x
�Fext � Reÿ1

d

d �x

 X2
a�1

�m
�a� �~s
�a� �f �a�

!
ÿWeÿ1

d

d �x

 �
�fint

�b �cn�2�i d �S

!

ÿWeÿ1
d

d �x

 �
�fint

@ �b
@ �xi

d �S

!
� Frÿ1

�
�f
�a�

 X2
a�1

�X
�a�
!

d �S �20�
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d

d �x
� �r�a� �u�a� �f �a�� � d

d �x
�G
�a�
int �21�

d

d �x
� �r�a� �u�a�2 �f �a�� � Eu

d

d �x
� �P
�a� �f
�a��

� d �F
�a�
ext

d �x
� Reÿ1

d

d �x
� �m�a� �~s�a� �f �a�� ÿ d �F

�a�
int

d �x
� Frÿ1

�
�f
�a�

�X
�a�

d �S �22�

X2
a�1

�f �a� � 1 �23�

where the characteristic scales: pressure P20, density r20, velocity u20, temperature T20, heat
capacity cp20, viscosity m20, thermal conductivity l20, surface tension b20 (b20 corresponds to
T20), area f, length d (d is half of the capillary width), are used to de®ne the following
dimensionless parameters: �P

�a� � P �a�=P20; �r�a� � r�a�=r20; �r�a� � r�a�=r20; �u�a� � u�a�=u20;
�T � T �a�=T20; �c�a�p � c�a�p =cp20 ; �m�a� � m=m20; �l

�a� � l�a�=l20; �b
�a� � b=b20; �f �a� � f �a�=f; �s � s=f;

�x � x=d; �F � F=r20u
2
20 f;

�G � G=r20u20 f; �c � cd:
Re=u20d/n20; Eu=P20/r20u20

2 ; Fr=u20
2 /gd; Pe=u20dr20cp20=l20; We=dr20u20

2 /b20 are the
Reynolds, the Euler, the Froude, the Peclet and the Weber numbers; W � q=r20u20cp20T20:
The dimensionless forms of Eqs.(5), (12), (13) and (23) are

�r�2� � �r�2�� �T
�2�� �24�

Eu �P
�1� � g �r�1� �T

�1� �25�

Eu �P
�1� � O exp�ÿo= �T

�1�� �26�

X2
a�1

�f
�a� � 1 �27�

where g=RT20/u20
2 ; o=qev/RT20; O � ~P=r20u

2
20:

Under characteristic conditions of the capillarity ¯ow, the non-dimensional groups have the
following orders: Re 0 1, Pe 0 10, Eu 0 107, Fr 0 10ÿ3, We 0 10ÿ4, W 0 13. So �l

�1�010ÿ1,
�l
�2� � 1, �m�1�010ÿ2, �m�2� � 1, �u�1�0103, �u�2� � 1, �P

�a�01, �T01, �f �a�01, �x01, the order of
magnitude of the derivatives in Eqs. (19)±(22) is 14. Accordingly, it is possible to omit the ®rst
term in the left hand side of Eqs.(20) and (22) and the second term in the right hand side. At
moderate and large heat ¯uxes on the wall (q > 10 w/m2), the ®rst terms in the left hand side

3 For water ¯ow in a heated capillary with d=5� 10ÿ4 m at u=10ÿ3±10ÿ2 m/s and q=106 w/m2.
4 Within the heating and superheat regions �x� 1 derivatives in Eqs. (19)±(22) are 0(1).
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and right hand side of Eq. (19) are of the same order. In this case it is possible to omit the
second term in the right hand side of Eq. (19).

7. Integral relations

The integral relations for the present problem have the following form (Appendix C).

7.1. Heating region: 0R �xR �x�, �f �1� � 0, �f �2� � 1

�r�2� �u�2� � 1 �28�

�T
�2� � 1� W �x �29�

� �u�2� ÿ 1� � Eu� �P
�2� ÿ 1� � ÿ �x�32=Re� �r�2�=Fr� �30�

7.2. Evaporation region: �x�R �xR �x��

Equations (18)±(22) have the following integrals

X2
a�1
� �r�a� �u�a� �f �a�� � 1 �31�

X2
a�1
� �r�a� �u�a� �f �a� �h�a�� � �h

�1�
� � W� �xÿ �x�� �32�

X2
a�1
� �r�a� �u�a�2f �a�� � Eu

X2
a�1

�
�P
�a� �f �a�

�
� �Fext ÿWeÿ1

�
�fint

�b �cni dSÿWeÿ1
�

�fint

@b
@ �xi

dSÿ Frÿ1
� �x

�x�

 X2
a�1

�r�a� �f �a�
!

d �x� Eu �P
�2�
� � �r�2�� u�2�

2

� ÿ 32=Re �x�

�33�

�r�1� �u�1� �f
�1� �

� �x

�x�
�r�1� �u�1�

������������������������
1� � f �1� 0 �2

q
d �x �34�
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�r�1� �u�1�
2 �f �1� � Eu �P

�1� �f
�1� �

� �x

�x�
�Eu �P

�1� � �r�1� �u�1�
2�

������������������������
1� � f �1� 0 �2

q
dxÿ Fr

� �x

�x�
�r�1� �f �1� d �x �35�

7.3. Superheat region: � �f �1� � 1; �f �2� � 0�

Equations (18)±(20) have the following integrals

�r�1� �u�1� � 1 �36�

�r�1� �u�1� �h
�1� � �W �x� �c�1�p �T

�1�
�� ÿ W �x�� �37�

Fig. 2. The scheme of the numerical solution procedure. (a) Two-phase region. (b) Entire ¯ow domain.
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� �u�1� ÿ �u�1��� � � Eu� �P
�1� ÿ �P

�1�
�� � � ÿ32=Re� �xÿ �x��� ÿ Frÿ1� �r�1� �xÿ �r�1��� �x��� �38�

8. Results and discussion

8.1. Parametrical study

The numerical solution of Eqs. (18)±(27) was carried out for laminar ¯ow, for a set of non-
dimensional groups varying within the limits: 5� 108 R Eu R 1012; 1 < W<10+3; 5� 10ÿ10 R

Fig. 3. The vapor and liquid pressure and velocity distribution within the evaporation region. for We = 10ÿ9,
W=2.5, Eu=1.6� 1011, Re=0.04, Fr=1.3� 10ÿ7.
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We R 10ÿ6; 5 � 10ÿ3 R Re R 10; 10ÿ8 R Fr R 10ÿ2. The non-dimensional groups were chosen
based on water ¯ow in a 500 mm slot, heat ¯ux variation of 1 (w/cm2) to 100 (w/cm2) and 10ÿ5

(m/s) R u20 R 2 � 10ÿ1 (m/s) velocity variation. Figure 2a shows schematically the numerical
solution procedure for the two-phase domain.
The calculations show that the liquid pressure monotonically decreases along the heating

region. Within the evaporation region a noticeable di�erence between the vapor and liquid
pressures takes place. The latter is connected with the e�ect of Laplace force due to the
curvature of the interphase surface. In the superheated region the vapor pressure decreases
downstream.
Figure 3a and b shows the character of the liquid and the vapor pressure distribution along

the evaporation region. It is found that for the above-mentioned parameters, the vapor
pressure is practically independent on x. Accordingly, the vapor temperature, as well as the
density, are also approximately constant. The latter makes it possible to reduce the number of
equations by 3. The remaining ®ve equations consist of four equations that contained only

Fig. 4. The dependences DP (We ) and DP (W ) for di�erent W at x�, for Eu=1.6� 1011, Re=0.04, Fr=10ÿ6.
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four unkowns (u (1), u (2), f (1), f (2)) and one equation (the combined vapor±liquid momentum
balance) which contains the additional unknown P (2). That means that the system of governing
equations may be solved successively: at ®rst to get u (1), u (2), f (1), f (2) and then to get P (2) by
solving the equation for the total momentum. Note that u (1), u (2), f (1), f (2) depend on W and
P (1) which is a function of the other non-dimensional groups: P (1)=f(Eu, Re, Fr, We ). The
liquid pressure decreases along the evaporation region and a sharp drop takes place near the
top of the evaporation region.
The liquid and vapor velocity versus axial position for the evaporation region are shown in

Fig. 3c and d. It is seen that the vapor velocity increases as �x0:4, whereas the liquid velocity is

Fig. 5. (a) The dependence DP (Eu ) at x�, for We=10ÿ7, W=10, Re=0.1, Fr=10ÿ7. (b) The dependence DP (Re )
at X�, for We=10ÿ7, W=10, Eu=2.5� 108, Fr=10ÿ5. (c) The dependence DP (Fr ) at X�, for We=10ÿ7, W=10,

Eu=2.5� 108, Re=0.1.
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almost constant along a wide range of �x and decreases very sharply towards the top of the
evaporation region.
The e�ect of various parameters on di�erence pressure between vapor and liquid is

illustrated in Figs. 4 and 5. It is seen that the e�ect of the Euler and Weber numbers as well as
the thermal parameter W is highly noticeable. An increase in Eu, We and W leads to a decrease

Fig. 6. The correlations W(Y ) for di�erent We numbers.

Fig. 7. The shape of interface surface for We=10ÿ7, W=2.5, Eu=1.6� 1011, Fr=10ÿ7, Re=0.04.
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in DP, whereas the di�erence of both phase pressures is practically independent of Reynolds
number. An increase in the Froude number is accompanied by an increase in DP for a small
Fr. At Fr>10ÿ6 the e�ect of Fr on DP is negligible.
The W(Y ) correlation corresponding to various Weber numbers is shown in Fig. 6. The

shape of the interface surface in a capillary ¯ow with phase change is presented in Fig. 7. As
the calculations show, the curvature of the meniscus is not constant and grows toward the
periphery.

8.2. The e�ect of regulated parameters

The regulated parameters of the problem are: the width and length of microchannel �d �
dhLGr�2�=b and �L � LhLGr�2�=b, initial temperature of the liquid �T

�2�
inl � T�2�inlc

�2�
p =hLG, gravity

Fig. 8. The e�ect of inlet liquid temperature, gap-size and wall heat ¯ux on the inlet cross-section pressure of the
microchannel.
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acceleration �g � gb3=n�2�
2

h
�2�3
LG and heat ¯ux on the wall �q � �qb=r�2�2hLGn�2�: The e�ect of these

parameters on the ¯ow characteristics: the liquid and vapor velocities �u�i � � u�i �b=n�2�hLGr�2�,
temperatures �T

�i � � T �i �c�2�p =hLG, pressures �p�i � � p�i �=r�2�
3�n�2�hLG=b�2 and the length of the

heating and evaporation region �xj � xjhLGr2=b was studied numerically.
The subsequent calculations were performed for laminar ¯ow of water (r (2)=103 kg/m3,

cp=4.19 kJ/kg K, b=0.059 N/m, hLG=2256 kJ/kg, y=0.67 rad) in a vertical slot of height d
= 1.5 mm. The inlet water temperature Tinl

(2), gap-size d, heat ¯ux q and acceleration due to
gravity g were varied within the limits; 273 < Tinl

(2) < 373 (K), 1 < d<500 (mm), 10 < q<600
(W/cm2), 1 < g < 600 (m/s2). Figure 2b shows schematically the numerical solution for the
entire ¯ow domain (i.e. the liquid single-phase ¯ow, two-phase ¯ow and super heated single-
phase vapor ¯ow). dt begin with the evaluation in the two-phase domain for initial guess of the
vapor pressure at the beginning of this domain (x�). The liquid single-phase length x� is
obtained based on the inlet temperature and the inlet pressure is calculated. If it is the inlet
pressure, the properties of the single-phase ¯ow in the liquid and vapor domain are calculated
and the numerical evaluation ends, if not the vapor pressure at x� in the two-phase domain is
changed and another iteration takes place. The calculations show that Pinl

(2), for a ®xed vapor
evaporation pressure, depends very weakly on Tinl

(2), d and q at large Euler numbers. For
example, the variation of �T

�2�
inl ,

�d and �q within the limits 0:52R �T
�2�
inl R0:68, 4� 104R �dR2� 107;

10ÿ8R �qR2:5� 10ÿ7 corresponds (at Eu> 108) to less than 0.02% change in Pinl
(2) (Fig. 8). The

temperature in the meniscus symmetry point T20 equals the saturation temperature Ts. Since
the pressure drop in the liquid region of the capillary ¯ow is small, it is possible to assume that
Ts corresponds to Pout

(1) The estimations show that such assumption does not e�ect practically,
the results of the calculations.
The e�ect of the inlet liquid temperature, the size of the capillary gap, the wall heat

Fig. 9. The e�ect of inlet liquid temperature on the meniscus position (a) the dependence of x�(Tinl
(2)); (b) the

dependencies of x��(Tinl
(2)); (c) the dependencies of Dx(Tinl

(2)).
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¯ux and gravity on the hydrodynamic and the thermal characteristics of the ¯ow in
microchannel are illustrated in Figs. 8±16. These data show that the preliminary heating
of the liquid (increase of Tinl

(2)) is accompanied by displacement of the meniscus toward the
inlet of capillary. In accordance with that the length of the liquid region of the ¯ow (x�)
decrease whereas the length of vapor region increase. Noteworthy that the length of the
evaporation region (as well as the shape of interface surface) does not depend on Tinl

(2).
Expansion of the vapor region leads to a vapor temperature and velocity growth at the

outlet. (Fig.10a±c). The latter is accompanied by a signi®cant change of the microchannel drag.
The calculation has shown that the decrease in the liquid region drag is smaller than the
growth of the hydraulic drag at the vapor region. As a consequence the total pressure drop
between the inlet and outlet cross-sections of the microchannel increase as the liquid
preliminary heating increases (Fig. 10b).
The e�ect of capillary gap-size on the interface surface, vapor velocity and the di�erence of

pressure and temperature between inlet and outlet cross-sections of the microchannel is
illustrated in Figs. 11 and 12. It is seen that an increase in d leads to the expansion of the

Fig. 10. The dependencies of vapor temperature, pressure and velocity in the outlet cross-section of the capillary on
the inlet liquid temperature (a) the dependence of Dp(Tinl

(2)); (b) the dependence of Dx(Tinl
(2)); (c) the dependence of

u (1)(Tinl
(2)).
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liquid region. This e�ect is explained as follows: at the ®xed values of the other parameters an
increase of d leads to a growth in the total mass ¯ux of the liquid through the capillary. Since
the area of heat transfer surface and wall heat ¯ux are invariable, the energy per unit mass of
liquid decrease. Accordingly the heating rate of the liquid decreases too. The latter is
accompanied by a displacement of the meniscus toward the outlet cross-section and therefore
x� increases. The length of the evaporation region increase proportionally to the size of the
gap, whereas the (x��ÿx�)/d ratio does not depend on d. The latter shows that the shape of the
interface surfaces are similar for various d. The decrease of the superheat region length with
gap-size growth leads to a decrease in the outlet vapor velocity and temperature (Fig. 12).
The e�ect of gravity on the liquid and vapor parameters in the inlet and outlet cross-section

is presented in Figs. 13 and 14. It is seen that an increase in the gravity is accompanied by a
signi®cant growth of the liquid pressure Pinl

(2) (Fig. 13a). At the same time an increase of the
vapor pressure in the outlet cross-section is observed. However, the rate of liquid and vapor
pressure growth are very di�erent. This causes an increase of the di�erence Dp=pinl

(2)ÿpout(1) as
gravity increase as well as the sign change at some value of �g: The temperature di�erence
DT=Tinl

(2)=Tout
(1) and vapor velocity in the outlet cross-section of the microchannels practically

do not depend on gravitational acceleration. (Fig. 14).
The e�ect of wall heat ¯ux on the length of the heating and evaporation regions, vapor

velocity, temperature and pressure in the outlet cross-section is shown in Figs. 14±16. These
data illustrate some important features of capillary ¯ow at large Euler numbers.
As was shown earlier at Eu > 108 the mass ¯ux through the microchannels is directly

proportional to the wall heat ¯ux. In this case the energy per unit mass of liquid absorbed
from the wall does not depend on the value of the heat ¯ux. As a consequence the length of
the heating and evaporation regions as well as the liquid and vapor temperatures are invariable

Fig. 11. The e�ect of gap-size on the meniscus position (a) the dependence of x�(d); (b) the dependence of x��(d); (c)
the dependence of Dx(d ).
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on q. This phenomenon which may be called ``the e�ect of self-regulation'' has an important
meaning to estimate the limiting permissible thermal states of the system with phase change of
a cooling liquid. Ha and Peterson (1998) and Peterson and Ha (1998) showed that for V-shape
micro-grooves, the evaporation length decreases slightly as heat ¯ux increases. However, the
Euler number in this research is of the order of 107 (Eu < 108) and the capillary pumping
mechanism in this kind of geometry is primarily due to the receding radius of curvature
parallel to the ¯ow direction.
At Eu > 108 the wall temperature Tw depends on the liquid (vapor) temperature, the heat

transfer intensity and the wall heat ¯ux.
To estimate the limiting permissible value of the wall heat ¯ux we use the thermal balance

equation

aDT � q �39�
where a is the convection heat transfer coe�cient, DT=TwÿT (1).

Fig. 12. The dependence of vapor temperature, pressure and velocity on gap-size (a) the dependence of DT(d ); (b)
the dependence of Dp(a ); (c) the dependence of u (1)(d ).
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Then we have

Tmax
w � T

�1�
out � q=a �40�

where Tw
max is the maximum temperature of the wall and Tout

(1) is the outlet vapor temperature.

Fig. 13. The e�ect of gravity on inlet liquid pressure and pressure di�erence between the inlet and outlet cross-

section of the capillary. (a) the dependence of Pinl
(2)( g ); (b) the dependence of DP( g ).

Fig. 14. The e�ect of gravity on vapor velocity and temperature in the outlet cross-section of the capillary. (a) the

dependence of u (1)( g ); (b) the dependence of DT( g ).
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Recalling that Nu � ARenPrm (Nu and Pr are Nusselt and Prandtl numbers, A, n, m are
known constants), we rewrite Eq. (39) in the following form

Tmax
w � T�1�out � cq �41�

where c � �D1ÿnnn=lAV nPm
r �, where l is the thermal conductivity and n is the kinematic

viscosity.
Let the permissible wall temperature equal Tw.p. Then we obtain the following estimation for

the permissible heat ¯ux on the wall qp.

cqpRTw:p: ÿ T
�1�
out �42�

The inequality (42) gives an estimation on the limiting permissible value of heat ¯ux on the
wall.

9. Conclusion

The quasi-one-dimensional model of ¯ow in a heated microchannel used in the present
research makes it possible to describe the fundamental features of two-phase capillary ¯ow due
to the heating and evaporation of the liquid. The approach developed allows the estimation of
the e�ects of capillary, inertia, frictional and gravity forces on the shape of the interface
surface as well as the velocity and temperature distributions. The results of the numerical
solution of the system of one-dimensional mass momentum and energy conservation equations,

Fig. 15. The e�ect of wall heat ¯ux on the meniscus position (a) the dependence of x�(q); (b) the dependence of

x��(q); (c) the dependence of DX��(q).
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a detailed analysis of the hydrodynamic and thermal characteristic of the ¯ow in heated

capillary with evaporative interphase surface are carried out.

The following results have been obtained.

1. The velocity, pressure and temperature distribution in a heated capillary with evaporative

interphase surface are determined by the following parameters accounting the physical

properties of the liquid and vapor as well as hydrodynamic and thermal conditions of the

¯ow: the Reynolds, Euler, Peclet, Froude and Weber numbers and four non-dimensional

groups g, O, o and W.
2. The vapor pressure, density and temperature practically do not change along the

evaporation region in physically realistic systems. The latter allows to simplify the system of

governing equations and reduce the problem to successive solution of the shortened system

of equations to determine the velocity, liquid pressure and gaseous phases as well as the

interphase shape in a heated capillary.

Fig. 16. The dependencies of the vapor temperature, pressure and the velocity in the outlet cross-section of the
capillary on the wall heat ¯ux (a) the dependence of DT(q ); (b) the dependence of u (1)(q ); (c) the dependence of

Dp(q ).
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3. The di�erence in pressure between vapor and liquid within the evaporation region depends
mainly on the Euler and Weber numbers as well as on the thermal parameter W. The e�ect
of the Reynolds and Froude numbers on the di�erence of both phases pressure is negligible.

4. The curvature of the meniscus in a heated capillary with evaporative interphase surface is
not constant.

5. Increasing the initial liquid temperature is accompanied by a change of the length of the
liquid and vapor regions, the increase of the vapor velocity and temperature as well as the
total drag in the microchannel.

6. Heat¯ux on the wall, gap-size of capillary as well as gravity a�ects noticeably the total drag
of microchannel and temperature di�erence between the inlet and outlet cross-sections.

7. At Euler number larger than 108 a self regulated regime of ¯ow is realized at which the
length of heating, evaporation and super heating regions as well as liquid and vapor
temperatures do not depend on the wall heat ¯ux. At such ¯ow the wall temperature
depends on the liquid (vapor) temperature, heat transfer intensity and wall heat ¯ux.

8. The maximum possible heat ¯ux which corresponds to the maximum allowed wall
temperatures is estimated. This maximum wall heat ¯ux is determined by the di�erence
between the permissible wall temperature and the vapor temperature in the outlet cross-
section which is a function of the Reynbolds and Nusselt numbers.
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Appendix A

The vapor and liquid densities, pressure and temperature on the interface surface are
connected by the following equation (Carey, 1992):

1

r�1�
dP �1�

dT
� 1

r�2�
dP �2�

dT
� hLG

T
�A:1�

where hLG is the latent heat of evaporation.
On the meniscus surface the deviation of vapor pressure P (1) from the saturation pressure Ps

depends on the surface tension b, liquid density r (2), gas constant R, temperature T and radii
of curvature r. When P (1)ÿPsat(T )<<(2b/r2) (which is usually the case), P (1) can be
approximated for most systems (Carey, 1992) by: P (1)=Psat exp(ÿ(2b/RTr (2)r2)). When the
ratio 2b/RTr (2)r (2))<<1, it is possible to assume P (1)=Ps.
In this case the vapor pressure on the interface surface may be found from the Clapeyron±

Clausius equation

dP �1�

dT �1�
� hLGr�1�

T �1�
�A:2�
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Appendix B

Let us transform Eqs. (14)±(16) using Gauss' theorem�
v�a�

@

@xl
�r�a�v�a�l � dv �

�
S�a�

r�a�v�a�l dSl �B:1�

�
v�a�

@

@xl

�
�r�a�v�a�l h�a�� ÿ l�a�

@T �a�

@xl

�
dv �

�
S�a�

�
�r�a�v�a�l h�a�� ÿ l�a�

@T �a�

@xl

�
dSl �B:2�

�
v�a�

@

@xk
�P�a�ik � dv �

�
S�a�

P�a�ik dS �B:3�

where S (a ) and v (a ) are the surface and the volume of the vapor and liquid media, respectively;
Sk � nkS, Sl � nlS: nk (nl) is the external normal to that surface.
The integrals

�
S�1� A

�1� dSk and
�
S�2� A

�2� dSk

�A�a� � r�a�v�a�l ,r�a�v�a�l h�a�,l�a�rT�a�l ,P�a�ik �

are equal (see Fig. 1b)�
S�2�

A�2� dSk �
Xviii

m�I

�
m

A�2� dSk �B:4�

�
S�1�

A�1� dSk �
Xiii

m�I

�
m

A�1� dSk �B:5�

where m is the number of restricted surface elements.
Summing integrals (B.4) and (B.5) and accounting:

1. impenetrability of the capillary walls��
II

r�2�v�2� dS �
�

vii

r�2�v�2� dS � 0;

�
II

r�2�v�2�h�2� dS �
�

vii

r�2�v�2�h�2� dS � 0

�
;

2. adhesion of ¯uid to the wall��
II

r�2�u�2� dS �
�

vii

r�2�u�2�S � 0

�
;

3. equality
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�
II

P �2� dS�
�

vii

P �2� dS � 0;

4. opposed signs of the normal to the interface surface on the liquid side and on the vapor side
(ni

(1)=ÿni(2)) yields (using conditions (6)±(8)) the following equations5

X2
a�1

�
f �a�

r�a�u�a� dS � c1 �B:6�

X2
a�1

�
f �a�

�
r�a�u�a�h�a� ÿ l�a�

@T �a�

@x

�
dS � Qext � c2 �B:7�

 X2
a�1

�
f �a�
�r�a�u�a�2 � r�a�u�a�v�a� � P �a� ÿ sxk� dS

!
�
�
fint

�
b�rÿ11 � rÿ12 �n�2�i �

@b
@xi

�
dS

� Fext � c3 �B:8�

�
f �a�

r�a�u�a� dS � ÿ
�
fint

r�a�v�a�l dS � c4 �B:9�

�
f �a�

�
r�a�u�a�h�a� ÿ l�a�

@T �a�

@x

�
dS�

�
fint

�
r�a�v�a�l h�a� ÿ l�a�

@T �a�

@xl

�
dS � Qext � c5 �B:10�

�
f �a�
�r�a�u�a�2 � r�a�u�a�v�a� � P �a� ÿ s�a�xk � dS�

�
fint

�r�a�v�a�i n�a�k � P �a� ÿ sik� dS

� F
�a�
ext � c6 �B:11�

where f (a )=fiii ', 2fiii; fint=2fiv; sxk
(a )=m (a )((@u (a )/@y)+(@v (a )/@x)ÿ(4/3) div v); Qext �

2l�2�
�
fii
�@T �2�=@y� dS; Fext�2m�2�

�
fii
s�2�yk dS; syk

(a )=m(a )((@v/@x)+(@u/@y)ÿ(4/3) div v); Q�a�ext � 0 at
a=1; Q

�a�
ext � Qext at a=2; Fext

(a )=0 at a=1 constants c1, c2, c3, c4, c5 and c6 correspond to
2
�
fi
A�2� dS; since integrals

�
f �a� r

�a�u�a�v�a� dS � 0;
�
f �a� �@u=@y� dS �

�
f �a� �@v=@y� dS � 0;�

fii
�@u=@x� dS � �fii�@v=@x� dS � 0:
Eqs. (B.8) and (B.11) may be presented as6 X2

a�1

�
f �a�
�r�a�u�a�2 � P �a� ÿ ~s�a�xk � dS

!
�
�
fint

�
bcn�2�i �

@b
@xi

�
dS � Fext � c3 �B:12�

5 For the plane problem.
6 Using correlation (10).
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�
f �a�
�r�a�u�a�2 � P �a� ÿ ~s�a�xk dS�

�
fint

�r�a�v�a�i v
�a�
k � P �a� ÿ sik� dS � F

�a�
ext � c6 �B:13�

where ~sxk�m�a���@v�a�=@x� ÿ �4=3��@u�a�=@x��; Fext�2m�2�
�
fii
��@u�2�=@y� ÿ �4=3��@v�2�=@y�� dS

Let us introduce average (over the ¯ow cross-section) parameters as:

hJ �a�i � f �a�
ÿ1
�
f �a�

J �a� dS �B:14�

where J is under examination parameter and h i is an operator indicating an averaging over the
cross-section. Then Eqs.(B.6), (B.7), (B.9), (B.10), (B.12) and (B.13) transform to the following
form:

X2
a�1

f �a�hr�a�u�a�i � c1 �B:15�

X2
a�1

f �a�
�
hr�a�u�a�h�a�i ÿ l�a�h@T

�a�

@x
i
�
� Qext � c2 �B:16�

 X2
a�1

f �a�
�
hr�a�u�a�i2 � hP �a�i ÿ hs�a�xki

�!
�
�
fint

�
bcn�2�i �

@b
@xi

�
dS � Fext � c3 �B:17�

f �a�hr�a�u�a�i � ÿ
�
fint

r�a�v�a�` dS� c4 �B:18�

f �a�
�
hr�a�u�a�h�a�i ÿ l�a�h@T

�a�

@x
i
�
�
�
fint

�
r�a�v�a�l h�a� ÿ l

@T �a�

@xl

�
dS � Q

�a�
ext � c5 �B:19�

f �a��hr�a�u�a�2i � hP �a�i ÿ h ~s�a�xki� �
�
fint

�r�a�v�a�i v
�a�
k � P �a� ÿ sik� dS � F

�a�
ext � c6 �B:20�

Equations (B.15)±(B.20) may be presented (after eliminating the constants c1, c2, c3, c4, c5
and c6) in the following form:

@

@x

 X2
a�1

f �a�hr�a�u�a�i
!
� 0 �B:21�

@

@x

 X2
a�1

f �a�
�
hr�a�u�a�h�a�i ÿ l�a�h@T

�a�

@x
i
�!
� @

@x
Qext �B:22�
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@

@x

 X2
a�1

f �a��hr�a�u�a�2i � P �a� ÿ h ~s�a�xki�
!
� @

@x
Fext ÿ @

@x
Fint �B:23�

@

@x
� f �a�hr�a�u�a�i� � ÿ@Gint

@x
�B:24�

@

@x

�
f �a�

�
hr�a�u�a�h�a�i ÿ l�a�h@T

�a�

@x
i
��
� @

@x
Q
�a�
ext ÿ

@

@x
Q
�a�
int �B:25�

@

@x
� f �a��hr�a�u�a�i � hP �a�i ÿ h ~s�a�xki�� �

@

@x
F
�a�
ext ÿ

@

@x
F
�a�
int �B:26�

where Fint �
�
fint
�bcn�2�i � �@b=@xi �� dS; Q

�a�
int �

�
fint
�r�a�v�a�l h�a� ÿ l�a��@T �a�=@xl�� dS; F

�a�
int ��

fint
�r�a�v�a�` v

�a�
k �P �a�ÿsik� dS and Gint�

�
fint

r�a�v�a�l dS:

Appendix C

We now consider the case where axial heat transfer due to the temperature gradient is
negligible compared to the heat transfer from the capillary wall and the friction caused by the
velocity gradient in the x direction is negligible compared to the momentum losses at the ¯uid/
wall interface.

C.1. Liquid heating region 0 < �x < �x�

Equations (18)±(20) contain the following integrals:

�r�2� �u�2� � c1 �C:1�

�r�2� �u�2�h�2� � W �x� c2 �C:2�

�r�2� �u�2�
2 � Eu �P

�2� � �Fext � Frÿ1 �r�2� �x� c3 �C:3�
The constants c1, c2 and c3 are found from conditions7

�x � 0, �r�2� � 1, �u�2� � 1, h�2� � 1 �C:4�
To determine �Fext in Eq. (C.3) we use the relation fii�jkj

� x
x in

x and Fext �
�
fii
t ds: Assuming

z=32/Re we arrive at

�Fext � 32=Re �x �C:5�

7 c1=1, c2=1, c3=1+Eu.
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Then the system of Eqs. (C.1)±(C.3) may be written as

�r�2� �u�2� � 1 �C:6�

�T
�2� � 1� W �x �C:7�

� �u�2� ÿ 1� � Eu� �P
�2� ÿ 1� � ÿ �x�32=Re� �r�2�=Fr� �C:8�

The heating region length is determined from the conditions

�x � �x�, �P � �Ps, �T � �Ts �C:9�
Since the dependence r (2)=f(T (2)) is very weak, it is possible to neglect the liquid density

r (2) variation within the heating region. Then Eqs. (C.7) and (C.8) may be transformed to:

�P
�2� � 1ÿ � �T

�2� ÿ 1�L �C:10�
where L � �32=Re� �r�2�=jEu�=F2

The dependences (C.9) and (C.10) determine the parameters at the end of the heating region.
The L parameter corresponding to micro-cooling system conditions is of the order of 10ÿ2. In
this case P� and T� practically do not depend on L. Accordingly, the heating region length
depends on the non-dimensional group W only.

�x� � � �T� ÿ 1�=W �C:11�

C.2. Evaporation region: �x�R �xR �x��

Equations (18)±(22) have the following integrals

X2
a�1
� �r�a� �u�a� �f �a�� � c4 �C:12�

X2
a�1
� �r�a� �u�a� �f �a� �h�a�� � W �x� c5 �C:13�

X2
a�1
� �r�a� �u�a�2f �a�� � Eu

X2
a�1
� �P
�a� �f �a�� � �Fext ÿWeÿ1

�
�fint

�b �cni dSÿWeÿ1
�

�fint

@b
@ �xi

dS� Frÿ1
� �x

�x�

 X2
a�1

�r�a� �f �a�
!

d �x� c6

�C:14�
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�r�1� �u�1� �f �1� � ÿ
� �x

�x�
�r�1� �u�1�

������������������������
1� � f �1� 0 �2

q
d �x� c7 �C:15�

�r�1� �u�1�
2 �f
�1� � Eu �P

�1� �f �1� � ÿ
� �x

�x�
�Eu �P

�1� � �r�1� �u�1�
2�

������������������������
1� � f �1� 0 �2

q
dx� Fr

� �x

�x�
�r�1� �f �1�d �x� c8

�C:16�

The constants c4, c5, c6, c7 and c8 are found from the conditions8

�x � �x�, �f �1� � 0, �f �2� � 1, �r �a� � �r�a�� , �u�a� � �u�a�� , �P
�a� � �P

�a�
� , �h

�a� � �h
�a�
�

Then Eqs. (C.12) and (C.13) may be written as

�r�1� �u�1� �f �1� � �r�2� �u�2� �f �2� � 1 �C:17�

�r�1� �u�1� �f �1� �h
�1� � �r�2� �u�2� �f �2� �h

�2� � �h
�1�
� � W� �xÿ �x�� �C:18�

� �r�1� �u�1�2 �f �1� � �r�2� �u�2�
2 �f �2� ÿ �r�2�� �u�2�

2

� � � Eu� �P
�1� �f �1� � �P

�2� �f �2� ÿ �P
�2�
� � � ÿWeÿ1

�
fint

�b �cnid �SÿWeÿ1
�

�fint

@ �b
@ �xi

d �Sÿ 32=Re� �xÿ �x�� ÿ Frÿ1
� �x

�x�

 X2
a�1

�r�a� �f �a�
!

d �x

�C:19�

�r�1� �u�1� �f �1� �
� �x

�x�
�r�1� �u�1�

������������������������
1� � f �1� 0 �2

q
d �x �C:20�

�r�1� �u�1�
2 �f �1� � Eu �P

�1� �f �1� �
� �x

�x�
�Eu �P

�1� � �r�1� �u�1�
2�

������������������������
1� � f �1� 0 �2

q
d �xÿ Frÿ1

� �x

�x�
�r�1� �f �1� d �x �C:21�

The left hand side of Eq. (C.18) can be presented as:

�r�1� �u�1� �f �1� �h
�1� ÿ �r�1� �u�1� �f �1� �h

�2� � �r�1� �u�1� �f �1� �h
�2� � �r�2� �u�2� �f �2� �h

�2�

� �r�1� �u�1� �f �1�� �h�1� ÿ �h
�2�� � �h

�2�� �r�1� �u�1� �f �1� � �r�2� �u�2� �f �2�� � �r�1� �u�1� �f �1�� �h�1� ÿ �h
�2�� � �h

�2�

Then Eq. (C.18) has form

�r�1� �u�1� �f �1�� �h�1� ÿ �h
�2�� � �h

�2� � �h
�2�
� � W� �xÿ �x�� �C:22�

8 c4=1, c5 � h�1�� ÿ W �x�, c6�Eu �P
�2�
� � �r�2�� u�2�

2

� ÿ32=Re �x�, c7=0, c8=0.
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If �h
�a�� �c�a�p �T� �c�2�p �1� then9

�T � �1� �qev �r�1� �u�1� �f �1��ÿ1� �T� � W� �xÿ �x��� �C:23�
where �qev � qev=cp20T20:
The location of �x�� can be determined from the conditions10

�x � �x��, �f �1�
0 � tgY � �f �1� � 1� �C:24�

where Y is the contact angle.
At a given Weber number, condition (C.24) may be satis®ed at some values of Euler number

which play role of eigenvalues.
The second integral in right hand side of Eq. (C.19) may be presented as�

�fint

@ �b
@ �xi

d �S �
�

�fint

@ �b
@ �T

@ �T

@ �xi
d �S �C:25�

where �@ �b=@ �T� < 0 for most known liquids.
In the partial case when b is constant the ®rst integral in the right hand side of Eq. (C.19)

may be expressed as�
�fint

�b �cni d �S � �arc tg �f �1�
0 ÿ p=2� �C:26�

C.3. Superheat region: � �f �1� � 1; �f �2� � 0�

Equations (24)±(26) have the following integrals

�r�1� �u�1� � c9 �C:27�

�r�1� �u�1� �h
�1� � �W �x� c10 �C:28�

�r�1� �u�1�
2 � Eu �P

�1� � �Fext � Frÿ1 �r�1� �x� c11 �C:29�
where the constants c9, c10 and c11 are found from the conditions

�x � �x��, �r�1� � �r�1��� , �u�1� � �u�1��� , �P
�1� � �P

�1�
�� , �T

�1� � �T
�1�
��

Then

�r�1� �u�1� � 1 �C:30�

9 Eq. (C.23) may be presented in the following form �r�1� �u�1� �f �1� ��1� W �xÿ �T
�2��= �qev:

10 The solution of Eq. (C.19) must satisfy the following conditions: �x � �x�, �f �1� � 1, � �f �1� � 0�; �x � �x�� f �1��tgY,
� �f �1� � 1�:
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�T
�1� � �T�� � W= �c�1�p � �xÿ �x��� �C:31�

� �u�1� ÿ �u�1��� � � Eu� �P
�1� ÿ �P

�1�
�� � � ÿ32=Re� �xÿ �x��� ÿ Frÿ1� �r�1� �xÿ �r�1��� �x��� �C:32�

The system of Eqs.(C.1), (C.3), (C.17), (C.21), (C.30) and (C.32) allows us to ®nd the
density, velocity, temperature and pressure distributions along the capillary axis, as well as the
interface surface shape.
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